Нове в епілептології
страницы: 10-13
Матеріал публікується за підтримки Української протиепілептичної ліги. Адреса для кореспонденціїї: paraboloid@i.ua |
Шановні колеги! До вашої уваги представлено огляд статті «Нейрозапалення: ознака чи причина епілепсії?» (Neuroinflammation: A Signature or a Cause of Epilepsy?) авторів E. Pracucci etal., опублікованої у виданні International Journal of Molecular Sciences (2021 Jul; 22 (13): 6981).
Епілепсія може бути як первинною патологією, так і вторинним наслідком багатьох неврологічних станів. За численними даними, нейрозапалення розвивається внаслідок епілепсії, а за патологічних станів, яким воно притаманне, існує більша ймовірність розвитку епілепсії. Однак двосторонній механізм взаємодії епілепсії та нейрозапалення нині лишається не повністю вивченим. E. Pracucci et al. намагаються дослідити та проаналізувати зв’язок між епілепсією та запаленням за деяких парадигматичних неврологічних і системних розладів, пов’язаних з епілепсією. Зокрема, вони обрали одну репрезентативну форму епілепсії для кожної з її фактично відомих етіологій. На думку авторів, глибше розуміння зв’язку між механізмами розвитку нейрозапалення та епілепсії є важливим чинником для поліпшення персоніфікованої терапії та профілактики.
Нейрозапалення — це процес запалення, що охоплює нервові тканини, який може виникнути під впливом кількох екзогенних чи ендогенних чинників (DiSabato etal., 2016; Gilhus etal., 2019; Cervellati etal., 2020). Відомо, що кілька з них можуть активувати нейрозапалення, як-от інфекція, черепно-мозкова травма, токсичні метаболіти, аутоімунні захворювання, старіння, забруднення повітря, пасивне паління або травма спинного мозку, а також стимулювати вироблення цитокінів і хемокінів, які також підтримують ріст клітин і виживання. Щонайменше вони охоплюють 40 типів інтерлейкінів (IL), які спочатку вважали експресованими лише лейкоцитами, але пізніше було встановлено, що вони продукуються різними типами клітин (Vaillant etal., 2021).
Цитокіни та хемокіни активують мікроглію як первинну імунну відповідь у центральній нервовій системі (ЦНС). Постійна активація мікроглії викликає рекрутинг периферичних імунних клітин, як-от макрофаги та лімфоцити В і Т, що відповідають за вроджену та адаптивну імунну відповідь (Rodríguez-Gómez etal., 2020). Вказані імунні клітини можуть отримати доступ до мозку через скомпрометований гематоенцефалічний бар’єр (ГЕБ), посилюючи захисний механізм і викликаючи поширене хронічне запалення та, можливо, нейродегенеративні ефекти (Yang etal., 2020).
Інший клітинний компонент, активований під час нейрозапалення, представлений астроцитами; вони строго пов’язані зі структурою ГЕБ і можуть реагувати на сигнали, які виділяють уражені нейрони або активована мікроглія. Їхній внесок у відновлення тканин може бути значущим, як у разі утворення гліального рубця, що зберігається для сприяння регенерації аксонів (DiSabato etal., 2016). Однак тривалі хронічні стани можуть призводити до активації молекулярних шляхів, які підтримують запальні властивості резидентних клітин мозку, зумовлюючи дезадаптивну реакцію, яка може бути шкідливою для ЦНС (Vezzani etal., 2019).
У багатьох дослідженнях вивчали взаємодію нейрозапалення та неврологічних розладів, особливо епілепсії (Vezzani etal., 2019 Vezzani etal., 2019; Rana etal., 2018). Як відомо, епілепсія може бути як первинною патологією (через структурні чи генетичні причини), так і вторинним ефектом. За останнього випадку — внаслідок черепно-мозкових травм і пухлин мозку, або ж мати інфекційну, метаболічну, імунну чи невідому етіологію, як зазначено в останній класифікації епілепсії Міжнародної протиепілептичної ліги (ILAE) (Scheffer etal., 2017).
Безперечно, наявність деяких хронічних запальних захворювань сприяє розвитку епілепсії або інших неврологічних розладів. Наприклад, здебільшого при аутоімунних захворюваннях ризик епілепсії у дітей зростає вп’ятеро, а в дорослих осіб віком < 65 років — учетверо (Ong etal., 2014, Geis etal., 2019).
Попри це, порушення регуляції запальної реакції в пошкодженій нейронній тканині є критичним чинником розвитку епілепсії, хоча досі незрозуміло, як незбалансована регуляція запалення призводить до розвитку епілепсії (Scheffer etal., 2017).
З іншого боку, кілька досліджень підтвердили, що епілептогенез спричиняє довгостроковий вплив на нейрозапалення, підсилюючи прогресування та погіршуючи клінічний результат у пацієнтів з епілепсією (Vezzani etal., 2019; Rana etal., 2018, Barker-Haliski etal., 2017; Meng etal., 2020; Löscher etal., 2020). Останніми роками вчені виявили загальні шляхи, що поєднують епілепсію з нейрозапаленням, починаючи з новаторського дослідження G. V. Goddard (1967) (Pitkänen etal., 2016; Ravizza etal., 2018; Löscher etal., 2020). Цікаво, що різні моделі хімічно та електрично індукованих судом демонструють підвищену регуляцію генів, виражену в запальних каскадах, як це спостерігається в дослідженнях за участю пацієнтів (Kim etal., 2015). В епілептичних моделях на гризунах ключову роль відіграє IL-1β, його рецептор (IL-1R) та антагоніст його рецептора (IL-1Ra). Епілептогенез, а також низка інших станів, що зумовлюють вторинний епілептичний фенотип, також корелюють з активацією Toll-подібних рецепторів (Kim etal., 2015; Hanke etal., 2011; Xiang etal., 2015; Dinarello, 2018; Bianchi etal., 2009; Trovato etal., 2020).
Зокрема, Toll-подібні рецептори відповідають за вроджену імунну відповідь як чинники, що передують продукуванню IL-1β. Щойно патоген потрапляє до організму, як трансмембранні рецептори на мембранах макрофагів і дендритних клітин розпізнають його та запускають процес локального запалення. Ба більше, різні гіперацетильовані молекули, як-от білок 1 високомобільної групи (HMGB1; компонент хроматину, який виділяється під час некрозу), здатні посилювати активацію Toll-подібних рецепторів і залучені до іктогенезу, як показано на моделях хронічної епілепсії та у клінічних дослідженнях (Bianchi etal., 2009; Maroso etal., 2010).
Додатковими чинниками є фактор некрозу пухлини α (TNF-α), трансформувальний фактор росту β (TGF-β), циклооксигеназа 2 та тромбоспондин (TSP-1) (Lin etal., 2020). Нещодавно вчені виявили, що сімейство пентраксинів також залучене до імунної відповіді, яка сприяє розвитку епілепсії. Експресія пентраксину-3 відбувається в мозку, де він секретується деякими лейкоцитами у відповідь на запальні сигнали, взаємодіє з позаклітинним матриксом і бере участь у ремоделюванні рецепторів α-аміно-3-гідрокси-5-метил-4-ізоксазол-пропіонової кислоти (AMPA), регулюючи збудливість ланцюга (Pepys, 2018).
Саме ключову роль у моделі експериментального аутоімунного енцефаліту на мишах відіграє активація пентраксину-3 (Ummenthum etal., 2016). Посилення запалення, як зазначають вчені, зумовлює ефекти на рівні позаклітинного матриксу, збільшуючи рівень редокс-чутливої матриксної металопротеїнази-9 у мозку в разі розвитку епілепсії та шизофренії (Bronisz etal., 2016; Dwir etal., 2020).
Матриксна металопротеїназа-9 стимулює рецептор кінцевих продуктів посиленого глікозилювання, що в підсумку призводить до секреції різних цитокінів; зміни у позаклітинному матриксі можуть чинити вплив на баланс між збудженням і гальмуванням, а також на синаптичну пластичність (DeVivo etal., 2013; Faini etal., 2018). Інший новий механізм, що підсилює нейрозапалення, підтримується ренін-ангіотензиновою системою, яка підвищує активацію імунної системи. Блокування цього шляху запобігає нейроповедінковим ефектам нейрозапалення, спричиненим лікуванням ліпополісахаридами (Gong etal., 2019).
E. Pracucci etal. акцентують на тому, що мета огляду — продемонструвати деякі відомі аспекти механістичного зв’язку між нейрозапаленням та епілепсією. Автори зосередилися переважно на деяких парадигматичних захворюваннях, як-от вогнищева коркова дисплазія; епілепсія, спричинена мутацією гена PCDH19; мультиформна гліобластома, материнська імунна активація, розсіяний склероз, розлади аутистичного спектра (РАС), пов’язані з епілепсією, та інфекція SARS-COV-2. Крім того, вони досліджували декілька спрямованих на нейрозапалення методів лікування, які застосовують у пацієнтів з епілепсією.
Як зазначають дослідники, вогнищева коркова дисплазія, зумовлена аномалією розвитку кори, є однією з перших причин стійкої до ліків епілепсії у дітей та дорослих (Guerrini etal., 2015). Кілька типологій вогнищевої коркової дисплазії були класифіковані відповідно до специфічних для них анатомічних і функціональних змін (Guerrini etal., 2014).
Ці зміни, для яких характерні поява балонних клітин, порушення ламінування або наявність ектопічних нейронів, часто бувають зумовлені мозаїчними мутаціями генів, залучених до сигнального шляху мішені рапаміцину в клітинах (Guerrini etal., 2014, D’Gama etal., 2018).
Такі нейронні аномалії супроводжуються нейрозапаленням, і ступінь активації мікроглії корелює з тривалістю та частотою нападів (Boer etal., 2006). Однак автори наголошують, що й досі не зовсім зрозуміло, наскільки нейрозапалення сприяє розвитку епілептичних нападів; це явно не є просто епіфеноменом (Crino, 2015).
Зокрема, 2016 року під час резекції мозку пацієнтів із вогнищевою корковою дисплазією було продемонстровано, що мікрогліальна активація може бути частково спричинена послабленням шляхів імунного гальмування, опосередкованим CD47-лігованим рецептором сигнального регуляторного білка α (CD47/SIRP-α) та взаємодією молекул CD200 і CD200R, за якого спостерігалося хронічне нейрозапалення (Sun etal., 2016).
Нещодавно вчені також виявили у восьми дітей, які страждали на вогнищеву коркову дисплазію типу II, змінену активацію сигнального шляху молекулою запалення — білком 1 високомобільної групи (HMGB1) — через Toll-подібний рецептор 4 (HMGB1-TLR4). Ступінь активації прозапальніих цитокінів, які передають сигнал у низхідному напрямку після HMGB1, був вищим у тканинах із зони резекції порівняно з розташованими по периферії патологічного вогнища, навіть якщо це не корелювало з тяжкістю епілепсії (Zhang etal., 2018).
Тоді як у деяких дослідженнях йшлося саме про позитивну кореляцію кожного з двох біомаркерів нейрозапалення — ізотипу людського лейкоцитарного антигену-DR (HLA-DR) та IL-17 — та частотою нападів упродовж місяця (Boer etal., 2006, He etal., 2013).
Однак невідомо, чи існує кореляція між ремісією епілепсії та зменшенням нейрозапалення, і проведення такого дослідження було б особливо важливим для прогнозування ремісії епілепсії у дітей (Berg etal., 2014).
Проте дослідження подібних механізмів обмежуються браком тваринних моделей вогнищевої коркової дисплазії, що відтворювали б усі особливості хвороби, та труднощами з отриманням зразків тканин пацієнтів.
Упродовж декількох останніх років було розроблено нові тваринні моделі, основані на генетичних маніпуляціях, які краще імітують патологію людини (Wong, 2009). Зокрема, у деяких із них використовують внутрішньоутробну електропорацію для впливу на білки сигнального шляху мішені рапаміцину в клітинах (Hsieh etal., 2016, Ribierre etal., 2018, Trovato etal., 2020). Тому автори вважають цілком імовірним, що в майбутньому вдасться отримати краще уявлення про функціональний зв’язок між активованими запальними молекулами та генезом / прогресуванням епілептичних нападів, щоб знайти кращі біомаркери для прогнозу цього захворювання.
Можливе залучення нейрозапалення було також запропоновано для епілепсії, зумовленої мутацією гена PCDH19 (епілепсії PCDH19). Цьому синдрому притаманні судоми, що починаються з раннього дитинства, а також проблеми з поведінкою, інтелектуальні вади та відставання у розвитку (Dibbens etal., 2008; Depienne etal., 2009). До його розвитку призводять мутації в гені Pcdh19 X-хромосоми; цікаво, що синдром розвивається в гетерозиготних жінок, але не в гемізиготних чоловіків (Dibbens etal., 2008).
Такі судоми виявляють чутливість до лихоманки і, як правило, виникають кластерами. Чутливість до лихоманки змусила дослідників висунути гіпотезу про те, що імунна система може бути залученою до генерації судом (Higurashi etal., 2015). N. Higurashi etal. узялися досліджувати ефективність застосування кортикостероїдів для лікування судом у п’яти осіб з епілепсією PCDH19. У всіх п’яти пацієнтів судоми швидко припинялися, навіть якщо наслідки були тимчасовими.
За цією роботою слідували два повідомлення про випадки, які підтверджували швидке припинення судомних кластерів у пацієнтів з епілепсією PCDH19 після введення кортикостероїдів (Bertani etal., 2015; Lee etal., 2018). Крім того, N. Higurashi etal. повідомили про одного пацієнта, якому кортикостероїди успішно вводили профілактично. Зокрема, у пацієнта із дослідження D. M. Lee etal. (2018) не було рецидиву судом щонайменше впродовж трьох років після лікування кортикостероїдами. Отримані результати потребують ретельного дослідження профілактичного застосування кортикостероїдів при епілепсії PCDH19.
Патогенез епілепсії PCDH19 досі незрозумілий. Щоб пояснити ефективність кортикостероїдів у лікуванні захворювання, Higurashi etal., висловили припущення про порушення ГЕБ як можливого патогенного механізму. Відомо, що порушення ГЕБ чинить вплив на гомеостаз мозку та призводить до судом. Кортикостероїди можуть поліпшити цілісність ГЕБ і в такий спосіб запобігти розвиткові судом (Marchi etal., 2011).
Дійсно, такий механізм дії може пояснити, чому пацієнти з епілепсією PCDH19 так швидко реагують на лікування кортикостероїдами. Подальшу підтримку цієї гіпотези дає виявлення антитіл проти кількох епітопів N-метил-D-аспартатного рецептора у спинномозковій рідині пацієнтів після судом. Наявність таких антитіл підтверджує неспецифічну імунну відповідь на деградацію нейрональних білків під час нападу. Їх виявлення у лікворі свідчить, що вони потрапили туди з мозку через ослаблений ГЕБ.
Експресія гена PCDH19 в ендотеліальних клітинах мозку є високою, тож можливо, що у гетерозиготних самок мозаїчна експресія PCDH19 призводить до порушення цілісності ГЕБ (Cooper etal., 2016). Тож майбутні дослідження на мишачих моделях епілепсії PCDH19 мають з’ясувати, чи є ознакою синдрому порушення ГЕБ і які молекулярні шляхи залучені до цього патогенезу. Мультиформна гліобластома — найпоширеніша та смертельна первинна пухлина головного мозку, середня тривалість життя за якої становить 12–15 місяців. Стандартні лікувальні процедури, які поєднують хірургічне втручання, променеву та хіміотерапію, не здатні протистояти цьому (Taylor etal., 2019). Через значну васкуляризацію та інвазивні властивості п’ятирічна виживаність пацієнтів становить лише близько 3,3 % (Ostrom etal., 2019).
Класифікують мультиформні гліобластоми на чотири різні підтипи: нейральні, пронейральні, мезенхімальні та класичні (Verhaak etal., 2010; Phillips etal., 2006). Досліднки зауважують, що запалення наявне за всіх підтипів мультиформних гліобластом, але виразнішим за є мезенхімального підтипу, який, що цікаво, має найгірший прогноз (Arimappamagan etal., 2013). Асоціюється мультиформна гліобластома з гіперзбудливістю та судомами із різною частотою (Liang etal., 2020; Venkatesh etal., 2019). Разом з іншими пухлинами головного мозку мультиформна гліобластома є другою за поширеністю причиною вогнищевої важковиліковної епілепсії (Ertürk Çetin etal., 2017; Berendsen etal., 2019).
Високу інвазивність та проліферацію мультиформної гліобластоми пояснюють трьома типами механізмів: 1) зміна мікроглії (Tremblay etal., 2011); 2) зміни мікросередовища пухлини протягом активації каскадів цитокінів; 3) порушення ГЕБ та ангіогенез (Van Tellingen etal., 2015).
Мікроглія відіграє важливу роль в імунному нагляді та являє собою найбільшу популяцію клітин, що інфільтрують пухлину, становлячи до 30 % її загальної маси. Зокрема, змінюється характер експресії генів мікроглії, що взаємодіють із клітинами мультиформної гліобластоми. Остання може обійти нейроімунну систему, знижуючи її чутливість до пухлин, пригнічуючи імунні реакції та сприяючи процесам пухлинної інвазії (Brown etal., 2018). Було зазначено, що при гіперактивації сигнальний шлях мішені рапаміцину в клітинах сприяє проліферації та метаболізму клітин, а отже, ініціації та прогресуванню пухлини (Tian etal., 2019).
Далі мікросередовище пухлини підтримує її прогресування, вивільняючи сигнали запалення у відповідь на її динамічну взаємодію з ендогенними клітинами (DiVirgilio etal., 2018; Charles etal., 2012; Curran etal., 2012; Sowers etal., 2014). M. R. Waters etal. (2019) ідентифікували два цитокіни, IL-1β та онкостатин М (OSM), які активують комплекси Re1B/p50 через шлях ядерного транскрипційного чинника NF-κB, що веде до збільшення рівня прозапальних цитокінів у клітинах мультиформної гліобластоми та погіршення прогнозу пацієнтів. Наприклад, в одному дослідженні вчені спостерігали значне зростання проліферації клітин мультиформної гліобластоми, спричинене IL-1β-індукованою активацією позаклітинної регульованої кінази (Meini etal., 2008). В іншому дослідженні було виявлено підвищений рівень рецепторів IL-1β у клітинних лініях мультиформної гліобластоми людини (U87MG), що надмірно експресують варіант рецептора епідермального чинника росту III (EGFRvIII) (Yeungetal., 2013).
Як зазначають дослідники, нижчі за рівнем IL-1β, IL-6 та IL-8 сприяють росту пухлини та інвазії (Tanabe etal., 2011, Hirano etal., 2000, Hodge etal., 2005). Зокрема IL-6, імовірно, є поганим прогностичним чинником виживання пацієнтів (Hori etal., 2019).
Дійсно, IL-6 підтримує ангіогенез, спричиняючи вплив на ендотеліальні клітини та астроцити через активацію судинного ендотеліального фактора росту (VEGF) та фактора росту фібробластів (FGF) (Yeung etal., 2013). Інша роль IL-6, що виділяється мікроглією, нещодавно була продемонстрована в дослідженні in vitro. Відповідно до отриманих результатів він сприяє не тільки ангіогенезу, а й підвищенню тиску інтерстиціальної рідини, утворенню набряків і змінам кровотоку, що насамкінець спричиняє порушення доставки введених ліків (Couto etal., 2019). Вважається, що прозапальні цитокіни призводять до порушення ГЕБ, і це є однією з основних причин набряку, пов’язаного з пухлиною мозку (Ryan etal., 2012). Набряк є однією з основних причин смертності від мультиформної гліобластоми, оскільки накопичення рідини в черепі швидко збільшує внутрішньочерепний тиск, що може спричинити зниження мозкового кровотоку, ішемію, дислокацію мозку та смерть (Papadopoulos etal., 2004). Як на тваринних моделях, так і в дослідженнях за участю пацієнтів, уражених мультиформною гліобластомою, було продемонстровано сприятливий ефект лікування кортикостероїдами (зокрема, дексаметазоном). Така терапія зменшує об’єм перитуморальної рідини, хоча точний механізм дії препаратів недостатньо вивчений.
Вчені запропонували два пояснення: пряма дія дексаметазону на компоненти судин або більш загальний протизапальний ефект, який може протидіяти впливу запальних цитокінів на розпад ГЕБ (Dubois etal., 2014). Нейрозапалення є основною причиною високої проліферації мультиформної гліобластоми і може одночасно чинити вплив на зміну збудливості мозку. Цей напрям потребує проведення додаткових досліджень. Схожі висновки фундаментальних наук і клінічних досліджень свідчать про зв’язок між порушеннями імунної системи матері під час вагітності та розладами нейророзвитку, як-от РАС та шизофренія (Solek etal., 2018). Без сумніву, імунна активація матері (MIA) може спровокувати судоми у потомства (Glass etal., 2009).
На тваринних моделях імунна активація матері може бути зумовлена введенням вагітним самкам або ліпополісахариду, або поліінозинової / поліцитидилової кислоти. Варто зазначити, що імунна активація матері може спричинити астрогліоз (Samuelsson etal., 2006). У дослідженні з використанням моделі ліпополісахарид-індукованої імунної активації матері введення проепілептичного препарату пентилентетразолу вже дорослому потомству призводило до тяжчих і частіших судом та до посилення тривожної поведінки порівняно з мишами контрольної групи (Zeraati etal., 2021). Дослідники встановили, що потомство мишей з імунною активацією матері надалі було уразливішим до когнітивних порушень, спричинених лікуванням пентилентетразолом. Оскільки запальні цитокіни TNF-α та IL-10 залучені до імунної активації матері, дослідники визначали наявність саме цих білків у гіпокампі нащадків, і виявили, що в них значно посилене вироблення TNF-α та IL-10.
Раніше на іншій моделі імунної активації матері (отриманої шляхом ін’єкції поліінозинової / поліцитидилової кислоти) J. Washington etal. (2015) встановили, що після пренатального впливу IL-6 судоми, спричинені введенням каїнової кислоти (KA), виникали дещо рідше. Спільний вплив IL-6 та IL-1β в одному часовому проміжку збільшував частоту нападів.
Результати інших раніше проведених досліджень, як зазначають вчені, теж підтвердили синергічну роль IL-6 та IL-1β у регулюванні гіперзбудливості (Pineda etal., 2013).
Інше молекулярне пояснення механізмів, залучених до епілепсії, індукованої імунною активацією матері, також представили I. Corradini etal. (2018). На думку дослідників, однієї ін’єкції PIC на дев’ятій ембріональній стадії було достатньо для збільшення сприйнятливості нащадків до судом у віці трьох місяців (P90). І навпаки, введення поліінозинової / поліцитидилової кислоти у дорослих мишей не підвищило сприйнятливість до судом.
До того ж автори виявили зміну мережевої активності, навіть якщо нейрозапальні маркери, зокрема кількість мікрогліальних (Iba+) клітин та показники активації — рівні гетеродимера CD11b та гліального фібрилярного кислого білка (GFAP) відповідали нормі. У згаданій моделі пренатальний вплив прозапальних молекул призвів до затримки нормального перемикання збудження на гальмування нейромедіатором γ-аміномасляною кислотою (ГАМК).
Фактично під час фізіологічного коркового розвитку ефект вивільнення ГАМК змінюється від збуджувального до гальмівного (Ben-Ari, 2002). У цій моделі, як зазначають вчені, пренатальний вплив нейрозапалення змінив експресію іонного транспортера NKCC1 та котранспортера KCC2, а отже, і концентрацію внутрішньоклітинного хлориду; лікування антагоністом NKCC1 буметанідом відновило фенотип. Наприклад, було продемонстровано, що ГАМК зберігає збуджувальний ефект у цій моделі епілепсії, спричиненій імунною активацією матері. Це свідчить також про затримку збудження / гальмування перемикання хлориду, як це вже було описано для багатьох інших патологічних моделей, наприклад ураження спинного мозку, хронічний біль, черепно-мозкова травма, цереброваскулярні інфаркти, аутизм, синдроми Ретта та Дауна, різні типи епілепсії та інші генетичні чи екологічні події (Ben-Ari, 2017).
Продовження в наступному номері.