Разделы: Обзор |

Нейробиология депрессии: серотониновая система мозга

О.А. Левада, Запорожская медицинская академия последипломного образования

Большая депрессия – распространенное психическое расстройство, которое является одной из наиболее частых причин нарушения трудоспособности [1, 2]. Это заболевание наблюдается во всех возрастных группах и поражает людей обоих полов в любом регионе мира. Опыт последних десятилетий показал, что перспективы изучения де-прессии связаны с ее нейробиологией. Для объяснения патогенетических механизмов депрессии широко используется молекулярная гипотеза. Согласно последней, неблагоприятные факторы окружающей среды, такие как стресс, воздействуют на генетическую уязвимость, что вызывает дезадаптивные изменения в цепи нейротрансмиттеров, среди которых основную роль играют моноамины. В большинстве имеющихся достижений в лечении заболевания также реализованы воздействия на расшифрованные медиаторные механизмы патогенеза [3].
Одной из важнейших систем церебральной нейромедиации, задействованных в патогенезе депрессии, является серотониновая система. Данная нейротрансмиттерная система имеет длительную эволюционную историю и участвует в целом ряде поведенческих актов и эмоциональных проявлений [4]. Она является объектом изучения значительного количества исследований, обзор которых представлен в настоящей публикации.
Для лучшего понимания интеграции серотониновой системы в мозговые процессы регуляции настроения следует в первую очередь рассмотреть имеющиеся данные о влиянии различных церебральных регионов на аффективные проявления. Так, исполнительные функции, включающие модулирование эмоционального поведения, которые могут иметь отношение к формированию когнитивных симптомов депрессии (депрессивное видение будущего), ассоциируются с гипоактивацией левой фронтальной коры [5].
Система эмоциональной памяти, включающая миндалину и гиппокамп, также вовлечена в реализацию проявлений депрессии. Депрессивные пациенты демонстрируют преимущественную сосредоточенность на негативных событиях прошлого [6]. Дисфункцией стриатных кругов, осуществляющих психомоторные функции, можно объяснить моторные симптомы депрессии. Расстройства пищевого поведения и нарушения ряда других соматических функций свидетельствуют о вовлечении в процесс гипоталамуса и гипоталамо-гипофизарно-надпочечниковой оси. 
Названные мозговые образования анатомически и функционально связаны между собой с помощью нейрональных кругов [4]. 
Во многочисленной экспериментальной литературе указывается значение путей, объединяющих в единую сеть фронтальный, паралимбический (вентральные отделы лобной коры, цингулярная извилина, островок, передний височный полюс), стриатный и стволовый регионы в осуществлении аффективных и мотивационных процессов [7-9]. В свою очередь, с помощью методов функциональной нейровизуализации были обнаружены нарушения активности указанных выше мозговых областей у депрессивных больных [10]. Развитию нейроанатомической модели депрессии способствовали данные о возникновении депрессивных нарушений при органических поражениях различных мозговых структур. Примером могут служить ишемические поражения левой лобной доли при постинсультной депрессии [11, 12], а также поражение фронто-стриатных путей у пациентов с сосудистой депрессией и болезнью Паркинсона [13-15]. 
Серотониновая система головного мозга является составной частью описанных нейрональных сетей регуляции настроения. Серотонинергические нейроны сгруппированы в 9 ядрах ствола мозга. Большинство из них совпадает с медиально расположенным ядром шва [16]. Серотонин (5-гидрокситриптамин [5-НТ]) синтезируется в указанных ядрах из триптофана. 
В регулировании аффективных процессов принимают участие восходящие терминали серотонинергических ядер, которые заканчиваются в большом количестве мозговых структур: подкорковых образованиях (хвостатое ядро, скорлупа, переднее и медиальное ядра таламуса), промежуточном, обонятельном мозге и ряде образований, связанных с ретикулярной формацией, коре больших полушарий, миндалевидном теле и гипоталамусе. При этом в коре лимбической системы серотонина значительно больше, чем в неокортикальных регионах [17-19]. 
Важность нарушения звена синтеза серотонина для возникновения депрессии показана в работах, исследовавших эффекты ограничения приема триптофана с пищевыми продуктами. Гипотриптофановая диета приводила к появлению депрессивных симптомов у здоровых лиц и у пациентов с депрессией в стадии ремиссии. По данным позитронной эмиссионной томографии, у обследованных пациентов обнаруживали снижение активности пре- и орбитофронтальной коры, а также таламуса [20]. Имеются убедительные доказательства генетической детерминированности синтеза серотонина в головном мозге. Известно, что в геноме человека имеется ген 5-НТТ, активность которого регулирует уровень вырабатываемого мозгом серотонина [21].
Серотонин выполняет свою физиологическую роль посредством воздействия на 5-НТ-рецепторы. 
В настоящее время известно более 15 видов серотониновых рецепторов [22-26], однако не все они идентифицированы в головном мозге человека. 
В центральной нервной системе (ЦНС) млекопитаю-щих обнаружены серотониновые 5-НТ1-рецепторы и пять их подтипов – A, B, D, E, F, представляющие собой протеины, содержащие 365-422 аминокислотных остатка. Посредством ингибиторных G-протеинов данные рецепторы сопряжены с аденилатциклазой, активность которой при их активации подавляется. 
5-НТ-рецепторы преимущественно локализованы в гиппокампе, миндалинах, прозрачной перегородке – структурах, принимающих участие в формировании настроения. Данные рецепторы ЦНС располагаются на пре- и постсинаптической мембране [27]. Пресинаптические 5-НТ-рецепторы по принципу обратной связи регулируют интенсивность высвобождения серотонина из пресинаптических нейрональных терминалей. Посредством стимуляции постсинаптических 5-НТ-рецепторов реализуется ряд важных физиологических функций серотонина: регуляция настроения, обсессивно-компульсивные реакции, сексуальное поведение, контроль аппетита, терморегуляция, кардиоваскулярное регулирование. Именно этот вид рецепторов вовлечен в реализацию антиде-прессивного эффекта селективных ингибиторов обратного захвата серотонина, антидепрессивного и противотревожного эффекта буспирона.
Подтип 5-НТ1D-рецепторов человека (функциональный аналог 5-НТ-рецепторов крысы) локализован во фронтальных отделах коры, стриатуме, базальных ганглиях [22, 28]. Пресинаптические 5-НТ1D-рецепторы играют роль ауторецепторов, через которые осуществляется отрицательная обратная связь между уровнем экстра- и интранейронального серотонина. Возможно, они играют также роль гетерорецепторов, посредством которых происходит управление выделением других нейротрансмиттеров, таких как дофамин, ацетилхолин, глутамат. Стимуляция же постсинаптических рецепторов данного подтипа в экспериментальных моделях вызывала длительную гиперактивность, антидепрессивное действие, снижение болевой чувствительности и аппетита, гипотермию. 
Недавно было показано, что работа 5-НТ1В/D-рецептора зависит от пептида Р11, принадлежащего к группе белков S100. Концентрация пептида Р11 в головном мозге у больных с депрессией оказалась низкой. Длительное антидепрессивное лечение увеличивает уровень данного пептида в мозговой ткани [3]. Функция других подтипов 5-НТ1-рецепторов пока не установлена.
В ЦНС человека обнаружены 5-НТ2-рецепторы. Их семейство состоит из трех подтипов: 5-НТ, 5-НТ, 5-НТ [22, 29, 30]. В большей степени такие рецепторы представлены в пирамидных нейронах лобной коры, скорлупе, в меньшей – в гиппокампе и хвостатом ядре. Они являются звеном системы подкрепления мозга, низкая активность которой обусловливает возникновение ангедонии – одного из ключевых симптомов депрессии [22]. 5-НТ-рецепторы опосредуют анксиогенный эффект, учавствуют в формировании полового поведения, вовлечены в регуляцию сна. Уменьшение их количества отмечено при посмертных исследованиях у лиц, страдавших депрессией и покончивших жизнь самоубийством. Активация 5-НТ-рецепторов вызывает увеличение концентрации дофамина в стриатуме. Современные атипичные антипсихотики обладают большой активностью в отношении данного подтипа, с чем связывают анти-депрессивный эффект этих препаратов [31]. Антагонисты 5-НТ-рецепторов увеличивают продолжительность медленноволнового сна, улучшая его качество, а агонисты сокращают фазу быстроволнового. 
5-НТ-рецепторы ЦНС в наибольшем количестве находятся в гиппокампе, коре головного мозга, полосатом теле, черной субстанции. Агонисты данных рецепторов вызывают анксиогенный и панический эффекты, нарушают сон. Блокада 5-НТ-рецепторов является одним из механизмов лечения депрессии. 
С этим связана эффективность антидепрессантов, являющихся антагонистами данных рецепторов (миансерин, имипрамин, мапротилин, амитриптилин, дезипрамин, агомелатин) [32, 33]. Антагонисты 5-НТ-рецепторов улучшают сон [22, 30] и обладают анксиолитическим свойством. Последним частично объясняется противотревожное действие селективных ингибиторов обратного захвата серотонина. 
5-НТ3-рецепторы располагаются в солитарном тракте, желатинозной субстанции, ядрах тройничного и блуждающего нервов, гиппокампе. Их центральные антагонисты оказывают анксиолитическое действие, повышают когнитивные способности, меняют чувствительность ноцицептивных нейронов, обладают противорвотным действием. 
5-НТ4-рецепторы максимально представлены в областях, насыщенных дофаминергическими нейронами (базальные ядра, аккумбенс). Они локализуются на ГАМК-ергических и холинергических интернейронах и ГАМК-ергических проекциях в черную субстанцию. Агонисты этих рецепторов могут повышать активность дофаминергических систем, антагонисты – блокировать данный эффект. Есть данные об анксиолитическом эффекте антагонистов 5-НТ4-рецепторов [22, 34]. 
5-НТ6-рецепторы располагаются в стриатуме, амигдале, гиппокампе, коре, обонятельной луковице. Различные антидепрессанты (кломипрамин, амитриптилин, нортриптилин, доксепин) имеют к ним высокое сродство и являются их антагонистами. 
5-НТ7-рецепторы представлены в гипоталамусе, таламусе, стволе головного мозга. Они могут участвовать в организации циркадных ритмов посредством воздействия на супрахиазматические ядра. В будущем 5-НТ6- и 5-НТ7-рецепторы могут стать мишенью для моделирования депрессии [3].
Следующим уровнем нарушений серотониновой системы при депрессии является обратный захват 5-НТ из синаптической щели в пресинаптический нейрон, который осуществляется белком-переносчиком серотонина. Плотность данного белка в мозге депрессивных пациентов уменьшалась, что выявлялось с помощью методов функциональной нейровизуализации, а у умерших вследствие суицида – по данным посмертных гистохимических исследований [35]. 
Индивидуальные особенности оборота серотонина в ЦНС в числе прочих наследственных факторов зависят от эффектов гена-переносчика серотонина 
(5-НТТ). Данный ген расположен на 17-й хромосоме. В нем описано несколько полиморфных участков, в том числе инсерционно-делеционный полиморфизм (5-HTTLPR), обнаруженный в области промотора и представленный двумя аллельными вариантами – l (длинный) и s (короткий – с делецией). Этот полиморфизм является функциональным [36-38]. 
Ряд авторов обнаружили ассоциацию между полиморфизмом 5-HTTLPR и развитием депрессивных состояний в ответ на различные стрессоры [39]. Лица, 
в генотипе которых имелся хотя бы один короткий аллель, демонстрировали более выраженные депрессивные симптомы, чаще имели диагноз депрессивного эпизода по классификации DSM-IV и сообщали о большем по сравнению с гомозиготами по длинному аллелю количестве суицидальных мыслей и попыток во время депрессивных эпизодов. Роль гена-переносчика серотонина в опосредовании связи между стрессовыми событиями жизни и последующим развитием де-
прессивных симптомов и физического дистресса была позднее подтверждена другими авторами [40-42]. Кроме того, обнаружено, что здоровым людям – носителям короткого аллеля – в большей степени присущи повышенная эмоциональная реактивность и тревожность, то есть личностные особенности, которые рассматривают как предиспозиционные по отношению к аффективным расстройствам [43, 44].
Описанные выше факты свидетельствуют о большом значении серотониновой системы для функционирования областей головного мозга, имеющих прямое отношение к регуляции аффективных процессов: фронтальных регионов, модулирующих эмоциональное поведение; лимбического региона, имеющего отношение к эмоциональным и когнитивным нарушениям при депрессии; фронто-стриатных структур, определяющих возникновение ангедонии; психомоторных расстройств. Отдельно следует выделить роль серотониновой системы в функционировании гипоталамического региона – важнейшего звена нейро-эндокринной, вегетативной, циркадной регуляции.
Серотониновая дисфункция непосредственно влияет на лимбико-гипоталамо-гипофизарно-надпочечниковую регуляцию у пациентов с депрессией [45]. Депрессия ассоциируется с повышением суточной продукции адренокортикотропного гормона. Его гиперпродукция может объясняться повышением выработки кортикотропин-релизинг-фактора, синтез которого в норме лимитируется по механизму обратной связи уровнем кортизола в плазме крови. 
Нарушение тормозных влияний кортизола на выработку кортикотропин-релизинг-фактора при депрессии связано с нарушением функции глюкокортикоидных и 5-НТ-рецепторов. Результатом гиперактивности гипоталамо-гипофизарно-надпочечниковой оси у больных с депрессией является повышение уровня плазменного кортизола. Гиперкортизолемия, в свою очередь, ведет к снижению активности постсинаптических 5-НТ-рецепторов, одного из главных проявлений серотониновой дисфункции. Таким образом, замыкается порочный круг.
Кортизол также потенцирует увеличение продукции адреналина. С этим связывают усиление активности симпатического звена сегментарного отдела вегетативной нервной системы. Данными механизмами обусловлены многие вегетативные симптомы депрессии. 
Серотонинергическая система учавствует в регуляции цикла сон-бодрствование. Неудивительно, что одним из наиболее частых симптомов депрессии является нарушение сна. Считают, что главный генератор циркадных ритмов, локализующийся в супрахиазмальном ядре переднего гипоталамуса [46], получает информацию об уровне активности организма из ядер шва наряду со стимулами от межколенчатых ядер латерального коленчатого тела [47, 48]. Блокада 5-НТ-рецепторов гипоталамического региона, которые становятся сверхчувствительными при депрессии, по данным Krauchi et al. (1997) и Leproult et al. (2005), может ресинхронизировать циркадный ритм и вызывать противодепрессивные эффекты [3].
Воздействия на серотониновую нейротрансмиссию реализованы в механизмах действия многих современных антидепрессантов и других психотропных препаратов. Для одних препаратов эти механизмы являются основным фармакодинамическим эффектом, для других – имеют дополнительное значение. 
Ингибирование обратного захвата серотонина лежит в основе фармакодинамики большого количества антидепрессантов: селективных ингибиторов обратного захвата серотонина (СИОЗС), ингибиторов обратного захвата серотонина и норадреналина (ИОЗСН), трициклических антидепрессантов (ТЦА).
СИОЗС (циталопрам, сертралин, флуоксетин, флувоксамин, пароксетин) воздействуют на основной сайт белка-переносчика серотонина. Эсциталопрам блокирует как основной, так и аллостерический сайты данного протеина. Блокада белка-переносчика серотонина вызывает инициальное возрастание концентрации 5-НТ в соматодендритной зоне (но не в зоне аксональной терминали). Это, в свою очередь, вызывает снижение активности 5-НТ-ауторецепторов. Поскольку их роль заключается в подавлении импульсов, приходящих к серотонинергическим нейронам, а также в подавлении синтеза и высвобождении серотонина, блокада рецепторов вызывает освобождение нейронов от подавляющих влияний и усиливает выделение серотонина из аксонального окончания в синаптическую щель. Возрастание концентрации серотонина в синаптической щели позволяет ему осуществлять свои влияния на постсинаптические рецепторы, в чем и состоит антидепрессивный эффект данной группы препаратов. Время, необходимое для снижения активности соматодендритных ауторецепторов 5-НТ и результирующего высвобождения серотонина из аксональной терминали, объясняет 2-3-недельную задержку в наступлении эффекта СИОЗС [49-51]. К главным преимуществам данной группы препаратов следует отнести их избирательное влияние на серотониновую систему, и отсутствие или минимальное воздействие на другие медиаторные системы головного мозга, что позволяет минимизировать побочные эффекты [3]. Селективность препаратов в группе СИОЗС не является одинаковой. По мере снижения селективности СИОЗС можно расположить следующим образом: эсциталопрам, циталопрам, сертралин, флуоксетин, пароксетин. 
ИОЗСН (венлафаксин, милнаципран, дулоксетин) подавляют обратный захват серотонина наряду с ингибированием реаптейка норадреналина. О значении норадреналиновых нарушений при депрессии речь пойдет в дальнейших публикациях. Блокада реаптейка серотонина – один из основных механизмов действия большинства ТЦА (кломипрамин, амитриптилин, доксепин, имипрамин, протриптилин). 
К сожалению, взаимодействие данных препаратов с другими рецепторными системами (особенно с холин-ергическими и гистаминовыми), приводит к появлению большого количества побочных эффектов и отказу от использования ТЦА как антидепрессантов первой линии [3].
Активными в отношении 5-НТ-рецепторов являются несколько препаратов. Пиндолол блокирует пресинаптические 5-НТ-рецепторы и, следовательно, должен предотвращать нежелательный эффект обратной связи, выражающийся в повышении концентрации соматодендритного серотонина. Он показал возможность ускорения начала действия антидепрессантов [3]. Буспирон, гепирон, азаперон, частичные антагонисты пресинаптических 5-НТ-рецепторов и активаторы постсинаптических обладают антидепрессивным действием [3].
Блокирующим эффектом в отношении 5-НТ-рецепторов обладают антидепрессанты различных химических групп: тетрациклические (миансерин), норадренергические и специфические серотонинергические (миртазапин), модуляторы серотонина (нефазодон, тразодон), агонист М1- и М2-рецепторов мелатонина и антагонист 5-НТ-рецепторов (агомелатин). Антидепрессивная активность современных атипичных антипсихотиков также связана с блокадой 5-НТ- и 5-НТ-рецепторов [3]. Кроме антидепрессивного действия, указанные антагонисты 5-НТ2-рецепторов синхронизируют нарушенные при депрессии биологические ритмы. В дополнение к ингибиции 5-НТ-рецепторов, миртазапин, блокируя a2-рецепторы, стимулирует синтез серотонина [3].
Потенциально интересные возможности в терапии депрессии могут быть связаны с воздействием на 5-НТ1В/D-, 5-НТ6- и 5-НТ7-рецепторы. Возникшие экспериментальные данные о фармакологической эффективности воздействия на эти мишени нуждаются в клинической валидизации [3].
Резюмируя представленные данные, мы полностью отдаем себе отчет, что была предпринята лишь попытка интегрировать современные сведения о нейробиологии серотониновой системы головного мозга и фармакотерапии депрессии, основанной на коррекции нарушений обмена серотонина. Результаты многих исследований остались за рамками настоящего обзора. Призмой, через которую проводился отбор данных для включения в работу, была возможность практического преломления полученных знаний. Ведь «нет ничего более практичного, чем хорошая теория». Выделение изолированной серотониновой дисфункции при депрессии также весьма условно. Очевидно, что деятельность данной нейромедиаторной системы необходимо рассматривать в структуре комплекса взаимосвязей расстройств норадрен-, дофамин-, ГАМК-, пептидергической и других медиаторных систем. Представленные сведения, являющиеся частью современной молекулярной гипотезы депрессии, необходимо дополнить данными о других биологических нарушениях, имеющих место при этом заболевании. Свое отражение они найдут в наших последующих публикациях. Очень надеемся, что предложенная информация о нейробиологических механизмах депрессивных расстройств будет полезной практикующим врачам. 

Литература
1. Kessler R.S. et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey // Arch Gen Psychiatry. – 1994. – Vol. 51. – P. 8-19.
2. Murray C.J.L., Lopez A.D. Global burden of disease: a comprehensive assessment of mortality and morbidity from diseases, injuries and risk factors in 1990 and projects to 2020, Vol. I. – Harvard: World Health Organization, 1996.
3. Обоснованное применение антидепрессантов: технический обзор данных, подготовленный Рабочей Группой CINP / Под ред. Т. Багай, Х. Грунце, Н. Сарториус: пер. с англ. – С-Пб., 2006. – 174 с.
4. Stein D.J. Serotonergic neurocircuitry in mood and anxiety disorders // Martin Dunitz Ltd. – 2003. – 82 p. 
5. Mineka S., Watson D., Clark L.A. Comorbidity of anxiety and unipolar mood disorders // Annu Rev Psychol. – 1998. – Vol. 49. – P. 377-412.
6. MacLeod A.K., Byrne A. Anxiety, depression, and the anticipation of future positive and negative experience // J Abnorm Psychol. – 1993. – Vol. 102. – P. 238-247.
7. Damasio A.R. The somatic marker hypothesis and the possible function of the prefrontal cortex // Philos Trans R Sos. – 1996. – Vol. 54S. – P. 1413-1420. 
8. MacLean P.D. Psychosomatic disease and the visceral brain: recent developments bearing on the Papez theory of emotion // Psychosom Med. – 1949. – Vol. 11. – P. 338-353. 
9. Rolls E.T. A theory of emotion, and its application to understanding the neural basis of emotions // Cognition Emotion. – 1990. – Vol. 4. – P.161-190.
10. Videbach P. PET measurements of brain glucose metabolism and blood flow in major depression: a critical review // Acta Psychiatr Scand. – 2000. – Vol. 101. – P. 11-20.
11. Narushima K., Kosier J.T., Robinson R.G. A reappraisal of poststroke depression, intra- and inter-hemispheric lesion location using meta-analysis // J Neuropsychiatry Clin Neurosci. – 2003. – Vol. 15. – P. 422-430.
12. Shimoda K., Robinson R.G. The relationship between poststroke depression and lesion location in long-term follow-up // Biol Psychiatry. – 1999. – Vol. 45. – P. 187-192.
13. Camus V., Kraehenbuhl H., Preisig M. et al. Geriatric depression and vascular diseases: what are the links? // J Affect Disord. – 2004. – Vol. 81, N 1. – P. 1-16.
14. Firbank M.J., Lloyd A.J., Ferrier N., O'Brien J.T. A volumetric study of MRI signal hyperintensities in late-life depression // Am J Geriatr Psychiatry. – 2004. – Vol. 12, N 6. – P. 606-612.
15. Seki T., Awata S., Koizumi Y. et al. Association between depressive symptoms and cerebrovascular lesions on MRI in community-dwelling elderly individuals // Nippon Ronen Igakkai Zasshi. – 2006. – Vol. 43, N 1. – P. 102-107.
16. Dahlstrom A., Fuxe K. Evidence for the existence of monoamine neurons in the central nervous system // Acta Physiol Scand. – 1965. – Vol. 64. – P. 1-85.
17. Бархатова В.П. Нейротрансмиттеры и экстрапирамидная патология. – М.: Медицина, 1988.
18. Громова Е.А. Серотонин и его роль в организме. – М.: Медицина, 1966.
19. Луценко Н.Г., Суворов Н.Н. Регуляция биосинтеза серотонина в центральной нервной системе // Успехи соврем. биол. – 1982. – Т. 94. – С. 243-251.
20. Bremmer J.D., Innis R.B., Salomon R.M. et al. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse // Arch Gen Psychiatry. – 1997. – Vol. 54. – P. 364-374. 
21. Конысова А.Ж. Серотониновый обмен при рассеянном склерозе и ретробульбарном неврите (клинико-биохимическое исследование): Дисс. …канд. мед. наук. М., 1995.
22. Сергеев П.В. Рецепторы. – Волгоград, 1999.
23. Cox C., Cohen J. 5-HT2B receptor signaling in the rat stomach fundus: dependence on calcium influx, calcium release and protein kinase C // Behav. Brain Res. – 1996. – Vol. 73. – P. 289. 
24. Fox S.H., Brotchie J.M. Anti-parkinsonian action of 5-HT2C receptor antagonism in the substantia nigra pars reticulata // Mov. Disord. - 1997. - Vol. 12, Suppl. 1. – P. 116. 
25. Hanssen E., Nilsson A., Ericsson P. Heterogeneity among astrocytes evaluated biochemical parameters // Adv. Biosci. – 1986. – 
Vol. 61. – P. 235-241. 
26. Holstege J.S., Knypers H.G. Brainstem projections to spinal motoneurons: an update commentary // Neuro. Sci. – 1987. – Vol. 23. – P. 809-821.
27. Blier P., Ward N.M. Is the a role for 5HT-1A-agonists in the treatment of depression // Biol. Psychiat. – 2003. – Vol. 53. – P. 193-203.
28. Connor J.D. et al. Use of GR 55562, a selective 5-HT1D antagonist, to investigate 5-HT1D receptor subtypes mediating cerebral vasoconstriction // Cephalgia. – 1995. – Vol. 15, Suppl. 14. – P. 99.
29. Choi C, Maroteaux J. Immunohistochemical localization of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain // FEBS Lett. – 1996. – Vol. 391. – P. 45.
30. Martin G.R. et al. 5-HT2C receptor agonists and antagonists in animal models of anxiety // Eur. Neuropharmacol. – 1995. – Vol. 5. – P. 209.
31. Мисюк Н.С. и соавт. Материалы к обмену серотонина при тормозных состояниях головного мозга. – Минск, 1965.
32. Willner P. Validity, reliability and utility of chronic mild stress model of depression: a 10 years review and evaluation // Psychopharmacology. – 1997. – Vol. 134. – P. 319-329. 
33. Papp M., Cruca P., Boyer P.-A., Mocaer E. Effect of agomelatine in the chronic mild stress model of depression in the rat // Neuropsychopharmacology. – 2003. – Vol. 28. – P. 694-703.
34. Голубев В.Л., Левин Я.И., Вейн А.М. Болезнь Паркинсона и синдром паркинсонизма. – М.: МЕДпресс, 1999.

Полный список литературы, включающий 51 пункт, находится в редакции.

Поделиться с друзьями:

Партнеры

ЛоготипЛоготипЛоготипЛоготипЛоготип